Skip to content

User Reference for SIMPLE

The simple namespace contains everything necessary for normal usage of the package.

simple

simple.asarray

asarray(values, dtype=None, saving=False)

Convert data to a numpy array.

If data is a string or a sequence of strings and saving=False, either a single string or a tuple of string will be returned. If saving is True the values will be converted to an array with a byte dtype. This ensures values are compatible with the hdf5 library.

Arrays with a bytes dtype will automatically be converted to the str dtype. If saving is False then this values will be converted to either a string or a tuple of strings (see above).

Parameters:

  • values

    An values like object.

  • dtype

    The data type of the returned values.

  • saving

    Should be True is the data is to be saved in a hdf5 file.

Source code in simple/utils.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def asarray(values, dtype=None, saving=False):
    """
    Convert ``data`` to a numpy array.

    If ``data`` is a string or a sequence of strings and ``saving=False``, either a single string or a tuple
    of string will be returned. If ``saving`` is ``True`` the values will be converted to an array with a byte dtype.
    This ensures values are compatible with the hdf5 library.

    Arrays with a ``bytes`` dtype will automatically be converted to the ``str`` dtype. If ``saving`` is ``False`` then
    this values will be converted to either a string or a tuple of strings (see above).

    Args:
        values (): An values like object.
        dtype (): The data type of the returned values.
        saving (): Should be ``True`` is the data is to be saved in a hdf5 file.

    """
    values = np.asarray(values, dtype=dtype)

    if values.dtype.type is np.bytes_:
        values = values.astype(np.str_)

    if not saving and values.dtype.type is np.str_:
        values = values.tolist()
        if type(values) is list:
            values = tuple(values)

    if saving and values.dtype.type is np.str_:
        values = values.astype(np.bytes_)

    return values

simple.aselement

aselement(string, without_suffix=False, allow_invalid=False)

Returns a Element representing an element symbol.

The returned element format is the capitalised element symbol followed by the suffix, if present. E.g. Pd-104* where * is the suffix.

The case of the element symbol is not considered.

Parameters:

  • string (str) –

    A string containing an element symbol.

  • without_suffix

    If True the suffix part of the string is ignored.

  • allow_invalid

    If False, and string cannot be parsed into an element string, an exception is raised. If True then string.strip() is returned instead.

Examples:

>>> ele = simple.asisotope("pd"); ele
"Pd"
Source code in simple/utils.py
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
def aselement(string, without_suffix=False, allow_invalid=False):
    """
    Returns a [``Element``][simple.utils.Element] representing an element symbol.

    The returned element format is the capitalised element
    symbol followed by the suffix, if present. E.g. ``Pd-104*`` where
    ``*`` is the suffix.

    The case of the element symbol is not considered.

    Args:
        string (str): A string containing an element symbol.
        without_suffix (): If ``True`` the suffix part of the string is ignored.
        allow_invalid ():  If ``False``, and ``string`` cannot be parsed into an element string, an exception is
            raised. If ``True`` then ``string.strip()`` is returned instead.

    Examples:
        >>> ele = simple.asisotope("pd"); ele
        "Pd"


    """
    if type(string) is Element:
        if without_suffix:
            return string.without_suffix()
        else:
            return string
    elif isinstance(string, str):
        string = string.strip()
    else:
        raise TypeError(f'``string`` must a str not {type(string)}')

    try:
        return Element(string, without_suffix=without_suffix)
    except ValueError:
        if allow_invalid:
            return string
        else:
            raise

simple.aselements

aselements(strings, without_suffix=False, allow_invalid=False)

Returns a tuple of Element strings where each string represents an element symbol.

Parameters:

  • strings

    Can either be a string with element symbol seperated by a , or a sequence of strings.

  • without_suffix

    If True the suffix part of each isotope string is ignored.

  • allow_invalid

    If False, and a string cannot be parsed into an isotope string, an exception is raised. If True then string.strip() is returned instead.

Examples:

>>> simple.asisotopes('ru, pd, cd')
('Ru', 'Pd', 'Cd')
>>> simple.asisotopes(['ru', 'pd', 'cd'])
('Ru', 'Pd', 'Cd')
Source code in simple/utils.py
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
def aselements(strings, without_suffix=False, allow_invalid=False):
    """
    Returns a tuple of [``Element``][simple.utils.Element] strings where each string represents an element symbol.

    Args:
        strings (): Can either be a string with element symbol seperated by a ``,`` or a sequence of strings.
        without_suffix (): If ``True`` the suffix part of each isotope string is ignored.
        allow_invalid ():  If ``False``, and a string cannot be parsed into an isotope string, an exception is
            raised. If ``True`` then ``string.strip()`` is returned instead.

    Examples:
        >>> simple.asisotopes('ru, pd, cd')
        ('Ru', 'Pd', 'Cd')

        >>> simple.asisotopes(['ru', 'pd', 'cd'])
        ('Ru', 'Pd', 'Cd')
    """
    if type(strings) is str:
        strings = [s for s in strings.split(',')]

    return tuple(aselement(string, without_suffix=without_suffix, allow_invalid=allow_invalid) for string in strings)

simple.asisolist

asisolist(isolist, without_suffix=False, allow_invalid=False)

Return a dictionary consisting of an isotope key mapped to a tuple of isotopes that should make up the key isotope.

If isolist is list or tuple of keys then each key will be mapped only to itself.

Parameters:

  • isolist

    Either a dictionary mapping a single isotope to a list of isotopes or a sequence of isotopes that will be mapped to themselfs.

  • without_suffix

    If True the suffix part of each isotope string is ignored.

  • allow_invalid

    If True invalid isotopes string are allowed. If False they will instead raise an exception.

Source code in simple/utils.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
def asisolist(isolist, without_suffix=False, allow_invalid=False):
    """
    Return a dictionary consisting of an isotope key mapped to a tuple of isotopes that should make up the
    key isotope.

    If ``isolist`` is list or tuple of keys then each key will be mapped only to itself.

    Args:
        isolist (): Either a dictionary mapping a single isotope to a list of isotopes or a sequence of isotopes that
            will be mapped to themselfs.
        without_suffix (): If ``True`` the suffix part of each isotope string is ignored.
        allow_invalid (): If ``True`` invalid isotopes string are allowed. If ``False`` they will instead raise
            an exception.
    """
    if type(isolist) is not dict:
        isolist = asisotopes(isolist, without_suffix=without_suffix, allow_invalid=allow_invalid)
        return {iso: (iso,) for iso in isolist}
    else:
        return {asisotope(k, without_suffix=without_suffix, allow_invalid=allow_invalid):
                asisotopes(v, without_suffix=without_suffix, allow_invalid=allow_invalid)
                for k,v in isolist.items()}

simple.asisotope

asisotope(string, without_suffix=False, allow_invalid=False)

Returns a Isotope representing an isotope.

The returned isotope format is the capitalised element symbol followed by a dash followed by the mass number followed by the suffix, if present. E.g. Pd-104* where * is the suffix.

The order of the element symbol and mass number in string is not important, but they must proceed the suffix. The element symbol and mass number may be seperated by -. The case of the element symbol is not considered.

Parameters:

  • string (str) –

    A string element symbol and a mass number.

  • without_suffix

    If True the suffix part of the isotope string is ignored.

  • allow_invalid

    If False, and string cannot be parsed into an isotope string, an exception is raised. If True then string.strip() is returned instead.

Examples:

>>> iso = simple.asisotope("104pd"); iso # pd104, 104-Pd etc are also valid
"Pd-104"
>>> iso.symbol, iso.mass
"Pd", "104"
Source code in simple/utils.py
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
def asisotope(string, without_suffix=False, allow_invalid=False):
    """
    Returns a [``Isotope``][simple.utils.Isotope] representing an isotope.

    The returned isotope format is the capitalised element
    symbol followed by a dash followed by the mass number followed by the suffix, if present. E.g. ``Pd-104*`` where
    ``*`` is the suffix.

    The order of the element symbol and mass number in ``string`` is not important, but they must proceed the suffix.
    The element symbol and mass number may be seperated by ``-``. The case of the element symbol is not
    considered.

    Args:
        string (str): A string element symbol and a mass number.
        without_suffix (): If ``True`` the suffix part of the isotope string is ignored.
        allow_invalid ():  If ``False``, and ``string`` cannot be parsed into an isotope string, an exception is
            raised. If ``True`` then ``string.strip()`` is returned instead.

    Examples:
        >>> iso = simple.asisotope("104pd"); iso # pd104, 104-Pd etc are also valid
        "Pd-104"
        >>> iso.symbol, iso.mass
        "Pd", "104"

    """
    if type(string) is Isotope:
        if without_suffix:
            return string.without_suffix()
        else:
            return string
    elif isinstance(string, str):
        string = string.strip()
    else:
        raise TypeError(f'``string`` must a str not {type(string)}')

    try:
        return Isotope(string, without_suffix=without_suffix)
    except ValueError:
        if allow_invalid:
            return string
        else:
            raise

simple.asisotopes

asisotopes(strings, without_suffix=False, allow_invalid=False)

Returns a tuple of Isotope strings where each string represents an isotope.

Parameters:

  • strings

    Can either be a string with isotopes seperated by a , or a sequence of strings.

  • without_suffix

    If True the suffix part of each isotope string is ignored.

  • allow_invalid

    If False, and a string cannot be parsed into an isotope string, an exception is raised. If True then string.strip() is returned instead.

Examples:

>>> simple.asisotopes('104pd, pd105, 106-Pd')
('Pd-104', 'Pd-105, 106-Pd')
>>> simple.asisotopes(['104pd', 'pd105', '106-Pd'])
('Pd-104', 'Pd-105, 106-Pd')
Source code in simple/utils.py
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
def asisotopes(strings, without_suffix=False, allow_invalid=False):
    """
    Returns a tuple of [``Isotope``][simple.utils.Isotope] strings where each string represents an isotope.

    Args:
        strings (): Can either be a string with isotopes seperated by a ``,`` or a sequence of strings.
        without_suffix (): If ``True`` the suffix part of each isotope string is ignored.
        allow_invalid ():  If ``False``, and a string cannot be parsed into an isotope string, an exception is
            raised. If ``True`` then ``string.strip()`` is returned instead.

    Examples:
        >>> simple.asisotopes('104pd, pd105, 106-Pd')
        ('Pd-104', 'Pd-105, 106-Pd')

        >>> simple.asisotopes(['104pd', 'pd105', '106-Pd'])
        ('Pd-104', 'Pd-105, 106-Pd')
    """
    if type(strings) is str:
        strings = [s for s in strings.split(',')]

    return tuple(asisotope(string, without_suffix=without_suffix, allow_invalid=allow_invalid) for string in strings)

simple.askeyarray

askeyarray(values, keys, dtype=None)

Returns a numpy array where the columns can be accessed by the column key.

Parameters:

  • values

    An array consisting of 2 dimensions where first dimension is the row and the second

  • keys

    The keys for each column in values. Must be the same length as the second dimension of values.

  • dtype

    The values type of the returned array. All columns will have the same dtype.

Notes If values has less then 2 dimensions then it is assumed to represent a single row of values.

It is not possible to save this type of array in hdf5 files if they have more than a few hundred columns.

Examples:

>>> a = simple.askeyarray([[1,2,3],[4,5,6]], ['Pd-104','Pd-105','Pd-106']); a
array([(1, 2, 3), (4, 5, 6)],
      dtype=[('Pd-104', '<i8'), ('Pd-105', '<i8'), ('Pd-106', '<i8')])
>>> a['Pd-104']
array([1, 4])
Source code in simple/utils.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def askeyarray(values, keys, dtype=None):
    """
    Returns a numpy array where the columns can be accessed by the column key.

    Args:
        values (): An array consisting of 2 dimensions where first dimension is the row and the second
        dimension is the column.
        keys (): The keys for each column in ``values``. Must be the same length as the second dimension of ``values``.
        of ``array``.
        dtype (): The values type of the returned array. All columns will have the same dtype.

    **Notes**
    If ``values`` has less then 2 dimensions then it is assumed to represent a single row of values.

    It is not possible to save this type of array in hdf5 files if they have more than a few hundred columns.

    Examples:
        >>> a = simple.askeyarray([[1,2,3],[4,5,6]], ['Pd-104','Pd-105','Pd-106']); a
        array([(1, 2, 3), (4, 5, 6)],
              dtype=[('Pd-104', '<i8'), ('Pd-105', '<i8'), ('Pd-106', '<i8')])
        >>> a['Pd-104']
        array([1, 4])

    """
    if type(keys) is str:
        keys = [k.strip() for k in keys.split(',')]

    a = np.asarray(values, dtype=dtype)
    dtype = [(k, a.dtype) for k in keys]

    if a.ndim < 2:
        a = a.reshape((-1, a.size))
    elif a.ndim > 2:
        raise ValueError('``values`` cannot have more than 2 dimensions')

    if a.shape[1] != len(keys):
        raise ValueError(
            f'item (r:{a.shape[0]}, c:{a.shape[1]}) must have same number of columns as there are keys ({len(keys)})')

    return np.array([tuple(r) for r in a], dtype=dtype)

simple.asratio

asratio(string, without_suffix=False, allow_invalid=False)

Returns a Ratio string representing the ratio of two isotopes.

The format of the returned string is the numerator followed by a / followed by the normiso. The numerator and normiso string be parsed by asisotope together with the given without_suffix and allow_invalid arguments passed to this function.

Parameters:

  • string (str) –

    A string contaning two strings seperated by a single /.

  • without_suffix (bool, default: False ) –

    If True the suffix part of the numerator and normiso string is ignored.

  • allow_invalid (bool, default: False ) –

    Whether the numerator and normiso has to be a valid isotope string.

If the returned string is an isotope string it will have the following attributes and methods.

Attributes:

  • numer (str) –

    The numerator string

  • denom (str) –

    The normiso string

Functions:

  • latex

    Returns a latex formatted version of the isotope.

  • without_suffix

    Returns a ratio string omitting the numerator and normiso suffix.

Source code in simple/utils.py
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def asratio(string, without_suffix=False, allow_invalid=False):
    """
    Returns a [``Ratio``][simple.utils.Isotope] string representing the ratio of two isotopes.

    The format of the returned string is the numerator followed by
    a ``/`` followed by the normiso. The numerator and normiso string be parsed by ``asisotope`` together with
    the given ``without_suffix`` and ``allow_invalid`` arguments passed to this function.

    Args:
        string (str): A string contaning two strings seperated by a single ``/``.
        without_suffix (bool): If ``True`` the suffix part of the numerator and normiso string is ignored.
        allow_invalid (bool): Whether the numerator and normiso has to be a valid isotope string.

    If the returned string is an isotope string it will have the following attributes and methods.

    Attributes:
        numer (str): The numerator string
        denom (str): The normiso string

    Methods:
        latex(string): Returns a latex formatted version of the isotope.
        without_suffix(): Returns a ratio string omitting the numerator and normiso suffix.

    """
    if type(string) is Ratio:
        return string
    elif isinstance(string, str):
        string = string.strip()
    else:
        raise TypeError(f'``string`` must a str not {type(string)}')

    try:
        return Ratio(string, without_suffix=without_suffix)
    except ValueError:
        if allow_invalid:
            return string
        else:
            raise

simple.asratios

asratios(strings, without_suffix=False, allow_invalid=False)

Returns a tuple of Ratio strings where each string represents the ratio of two isotopes.

Parameters:

  • strings

    Can either be a string with isotope ratios seperated by a , or a sequence of strings.

  • without_suffix

    If True the suffix part of each isotope string is ignored.

  • allow_invalid

    If False, and a string cannot be parsed into an isotope string, an exception is raised. If True then string.strip() is returned instead.

Source code in simple/utils.py
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def asratios(strings, without_suffix=False, allow_invalid=False):
    """
    Returns a tuple of [``Ratio``][simple.utils.Isotope] strings where each string represents the ratio of two isotopes.

    Args:
        strings (): Can either be a string with isotope ratios seperated by a ``,`` or a sequence of strings.
        without_suffix (): If ``True`` the suffix part of each isotope string is ignored.
        allow_invalid ():  If ``False``, and a string cannot be parsed into an isotope string, an exception is
            raised. If ``True`` then ``string.strip()`` is returned instead.
    """
    if type(strings) is str:
        strings = [s.strip() for s in strings.split(',')]

    return tuple(asratio(string, without_suffix=without_suffix, allow_invalid=allow_invalid) for string in strings)

simple.create_legend

create_legend(ax, outside=False, outside_margin=0.01, **kwargs)

Add a legend to a plot.

Parameters:

  • ax

    The working axes. Accepted values are any matplotlib Axes object or plt instance.

  • outside (bool, default: False ) –

    If True the legend will be drawn just outside the upper left corner of the plot. This will overwrite any loc and bbox_to_anchor arguments in kwargs.

  • outside_margin

    Margin between the plot and the legend. Relative to the width of the plot.

  • **kwargs

    Any valid argument for matplotlibs legend function.

Source code in simple/plotting.py
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
@utils.set_default_kwargs()
def create_legend(ax, outside = False, outside_margin=0.01, **kwargs):
    """
    Add a legend to a plot.

    Args:
        ax (): The working axes. Accepted values are any matplotlib Axes object or plt instance.
        outside (bool): If ``True`` the legend will be drawn just outside the upper left corner of the plot. This will
            overwrite any ``loc`` and ``bbox_to_anchor`` arguments in ``kwargs``.
        outside_margin (): Margin between the plot and the legend. Relative to the width of the plot.
        **kwargs (): Any valid argument for matplotlibs
            [``legend``](https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.legend.html) function.
    """
    ax = get_axes(ax)

    if outside:
        kwargs['loc'] = 'upper left'
        kwargs['bbox_to_anchor'] = (1+outside_margin, 1)

    ax.legend(**kwargs)

simple.create_rose_plot

create_rose_plot(ax=None, *, vmin=None, vmax=None, log=False, cmap='turbo', colorbar_show=True, colorbar_label=None, colorbar_fontsize=None, xscale=1, yscale=1, segment=None, rres=None, **fig_kw)

Create a plot with a rose projection.

The rose ax is a subclass of matplotlibs polar ax.

Parameters:

  • ax

    If no preexisting ax is given then a new figure with a single rose ax is created. If an existing

  • vmin (float, default: None ) –

    The lower limit of the colour map. If no value is given the minimum value is 0 (or 1E-10 if

  • vmax (float, default: None ) –

    The upper limit of the colour map. If no value is given then vmax is set to 1 and all bin default_weight are divided by the heaviest bin weight in each histogram.

  • log (bool, default: False ) –

    Whether the color map scale is logarithmic or not.

  • cmap

    The prefixes of the colormap to use. See, [matplotlib documentation][https://matplotlib.org/stable/users/explain/colors/colormaps.html] for a list of available colormaps.

  • colorbar_show

    Whether to add a colorbar to the right of the ax.

  • colorbar_label

    The label given to the colorbar.

  • colorbar_fontsize

    The fontsize of the colorbar label.

  • xscale

    The scale of the x axis.

  • yscale

    The scale of the y axis.

  • segment

    Which segment of the rose diagram to show. Options are N, E, S, W, None. If None the entire circle is shown.

  • rres

    The resolution of lines drawn along the radius r. The number of points in a line is calculated as

  • **fig_kw

    Additional figure keyword arguments passed to the pyplot.figure call. Only used when ax is not given.

Returns:

  • RoseAxes

    The new rose ax.

Source code in simple/plotting.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def create_rose_plot(ax=None, *, vmin= None, vmax=None, log = False, cmap='turbo',
                     colorbar_show=True, colorbar_label=None, colorbar_fontsize=None,
                     xscale=1, yscale=1,
                     segment = None, rres=None,
                     **fig_kw):
    """
    Create a plot with a [rose projection](simple.plot.RoseAxes).

    The rose ax is a subclass of matplotlibs
    [polar ax](https://matplotlib.org/stable/api/projections/polar.html#matplotlib.projections.polar.PolarAxes).

    Args:
        ax (): If no preexisting ax is given then a new figure with a single rose ax is created. If an existing
        ax is passed this ax will be deleted and replaced with a [RoseAxes][#RoseAxes].
        vmin (float): The lower limit of the colour map. If no value is given the minimum value is ``0`` (or ``1E-10`` if
        ``log=True``)
        vmax (float): The upper limit of the colour map. If no value is given then ``vmax`` is set to ``1`` and all bin
            default_weight are divided by the heaviest bin weight in each histogram.
        log (bool): Whether the color map scale is logarithmic or not.
        cmap (): The prefixes of the colormap to use. See,
                [matplotlib documentation][https://matplotlib.org/stable/users/explain/colors/colormaps.html]
                 for a list of available colormaps.
        colorbar_show (): Whether to add a colorbar to the right of the ax.
        colorbar_label (): The label given to the colorbar.
        colorbar_fontsize (): The fontsize of the colorbar label.
        xscale (): The scale of the x axis.
        yscale (): The scale of the y axis.
        segment (): Which segment of the rose diagram to show. Options are ``N``, ``E``, ``S``, ``W``, ``None``.
            If ``None`` the entire circle is shown.
        rres (): The resolution of lines drawn along the radius ``r``. The number of points in a line is calculated as
        ``r*rres+1`` (Min. 2).
        **fig_kw (): Additional figure keyword arguments passed to the ``pyplot.figure`` call. Only used when ``ax``
            is not given.

    Returns:
        RoseAxes : The new rose ax.
    """
    if ax is None:
        figure_kwargs = {'layout': 'constrained'}
        figure_kwargs.update(fig_kw)
        fig, ax = plt.subplots(subplot_kw={'projection': 'rose'}, **figure_kwargs)
    else:
        ax = get_axes(ax)
        fig = ax.get_figure()
        rows, cols, start, stop = ax.get_subplotspec().get_geometry()

        ax.remove()
        ax = fig.add_subplot(rows, cols, start + 1, projection='rose')

    if colorbar_label is None:
        if vmax is None:
            colorbar_label = f'Bin weight normalised to largest bin'
        else:
            colorbar_label = f'Bin weight'
    elif colorbar_label is False:
        colorbar_label = None

    ax.set_colorbar(vmin=vmin, vmax=vmax, log=log, cmap=cmap,
                    label=colorbar_label, show=colorbar_show, fontsize=colorbar_fontsize)
    ax.set_xyscale(xscale, yscale)

    if segment:
        ax.set_segment(segment)

    if rres:
        ax.set_rres(rres)

    return ax

simple.get_data

get_data(models, axis_names, *, where=None, latex_labels=True, key=None, default_attrname=None, unit=None, default_value=np.nan, key_in_label=None, numer_in_label=None, denom_in_label=None, model_in_label=None, unit_in_label=None, attrname_in_label=None, axis_name_in_label=None, label=True, prefix_label=None, suffix_label=None, mask=None, mask_na=True, _kwargs=None, **kwargs)

Get one or more datasets from a group of models together with suitable labels.

Each data point is a dictionary that contains a value for each of the axis given in axis_names plus a label describing the data point. The value for each axis is determined by the key argument. This argument has two possible components; the name of the attribute and the index, or key, to be applied this, or the default_attrname, attribute.

The name of the attribute must start with a . followed by the path to the attribute relative to the Model object using successive . for nested attributes, e.g. .intnorm.eRi.

The index, or key, part of the key can either be an integer, a slice or a sequence of keys seperated by ,. The keys will be parsed into either Isotope, Ratio, or Element strings. If a key is given it is assumed that the attribute contains an isotope key array. Therefore, Element strings will be replaced with all the isotopes of that element present in the attribute (Across all models) and Ratio strings will return the numerator value divided by the denominator value.

If the attribute name is given in key then the index, or key, part must be enclosed in square brackets, e.g. .intnorm.eRi[105Pd]. If the default_attrname should be used then key should only contain the index, or key.

By the default the label for each data point only contains the information is not shared with all other data points. Information that is shared between all data points is instead included in the axis labels.

Parameters:

  • models

    A collection of models to plot. A subselection of these models can be made using the where argument.

  • axis_names
  • where (str, default: None ) –

    If given will be used to create a subselection of models. Any kwargs prefixed with where_ will be supplied as keyword arguments. See ModelCollection.where for more details.

  • latex_labels (bool, default: True ) –

    Whether to use the latex formatting in the labels, when available.

  • key ((str, int, slice), default: None ) –

    This can either be a valid index to the default_attrname array or the path, with or without a valid index, of a different attribute. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • default_attrname

    The name of the default attribute to use if xkey and ykey are indexes. By default, the default key array is used. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • unit

    The desired unit for the xkey and ykey. Different units for xkey and ykey can be specified by supplying a (<xkey_unit>, <ykey_unit>) sequence. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • default_value

    The value given to invalid indexes of arrays. Must have a shape compatible with the size of the indexed array. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • key_in_label (bool, default: None ) –

    Whether to include the key index in the label. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • numer_in_label (bool, default: None ) –

    Whether to include the numerator of a key index in the label. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • denom_in_label (bool, default: None ) –

    Whether to include the denominator of a key index in the label. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • model_in_label (bool, default: None ) –

    Whether to include the model name in the label. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • unit_in_label (bool, default: None ) –

    Whether to include the unit in the label. Accepts either single universal value or a list of values, one for each axis (See below for details).

  • attrname_in_label (bool, default: None ) –

    Whether to include the attribute name in the label. By default the name is only included if it is different from the default_attrname. Accepts a single universal value or a list of values, one for each axis (See below for details).

  • axis_name_in_label (bool, default: None ) –

    Whether to include the axis name in the label. Accepts either single universal value or a value for each axis (See below for details).

  • label ((str, bool, None), default: True ) –

    The label for individual datapoints. Accepts either a single universal value or a list of values, one per data point (See below for details).

  • prefix_label

    Text to be added to the beginning of each data point label. Accepts either a single universal value or a list of values, one per data point (See below for details).

  • suffix_label

    Text to be added at the end of each data point label. Accepts either a single universal value or a list of values, one per data point (See below for details).

  • mask ((str, int, slice), default: None ) –

    Can be used to apply a mask to the data which is plotted. See the get_mask function of the Model object. Accepts either a single universal value or a list of values, one per model (See below for details).

  • mask_na (bool, default: True ) –

    If True masked values will be replaced by np.nan values. Only works if all arrays in a dataset have a float based datatype. Accepts either a single universal value or a list of values, one per model (See below for details).

  • **kwargs
One per axis arguments

These arguments allow you to set a different value for each axis in axis_names. This can be either a single value used for all the axis or a sequence of values, one per axis.

It is also possible to define the value for a specific axis by including a keyword argument consiting of the axis name followed directly by the argument name. The value specified this way will take presidence over the value given by the argument itself. For example xkey=102Pd will set the key argument for the x axis to 102Pd.

One per data point arguments

These arguments allow you to set a different value for each data point. The number of data points is equal to the number of models multiplied by the number of datasets generated. This can be either a single value used for all the axis or a sequence of values, one per data point.

One per model arguments

These arguments allow you to set a different value for each model in models. This can be either a single value used for all the axis or a sequence of values, one per model.

Returns:

  • Tuple[dict, dict]: Two dictionaries containing:

    • A dictionary with the data points for each model, mapped to the model name

    • A dictionary containing labels for each axis, mapped to the axis name.

Examples:

Here is an example of how the return data can be used.

model_datapoints, axis_labels = simple.get_data(models, 'x, y', xkey=..., ykey=...)

# Set the axis labels
plt.set_xlabel(axis_labels['x'])
plt.set_ylabel(axis_labels['y'])

# Iterate though the data and plot it
for model_name, datapoints in model_datapoints.items():
    for dp in datapoints:
        plt.plot(dp['x'], dp['y'], label=dp['label'])
Source code in simple/plotting.py
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
@utils.set_default_kwargs()
def get_data(models, axis_names, *, where=None, latex_labels = True,
             key=None, default_attrname=None, unit=None, default_value = np.nan,
             key_in_label=None, numer_in_label=None, denom_in_label=None,
             model_in_label=None, unit_in_label=None, attrname_in_label=None, axis_name_in_label=None,
             label = True, prefix_label = None, suffix_label = None,
             mask = None, mask_na = True,
             _kwargs = None, **kwargs):
    """
    Get one or more datasets from a group of models together with suitable labels.

    Each data point is a dictionary that contains a value for each of the axis given in *axis_names* plus a label
    describing the data point. The value for each axis is determined by the *key* argument. This argument has two
    possible components; the name of the attribute and the index, or key, to be applied this, or the
    *default_attrname*, attribute.

    The name of the attribute must start with a ``.`` followed by the path to the attribute relative to the Model
    object using successive ``.`` for nested attributes, e.g. ``.intnorm.eRi``.

    The index, or key, part of the *key* can either be an integer, a slice or a sequence of keys seperated by ``,``.
    The keys will be parsed into either [Isotope](simple.utils.Isotope), [Ratio](simple.utils.Ratio), or
    [Element](simple.utils.Element) strings. If a key is given it is assumed that the attribute contains an isotope
    key array. Therefore, Element strings will be replaced with all the isotopes of that element
    present in the attribute (Across all models) and Ratio strings will return the numerator value divided by the
    denominator value.

    If the attribute name is given in *key* then the index, or key, part must be enclosed in square brackets, e.g.
    ``.intnorm.eRi[105Pd]``. If the *default_attrname* should be used then *key* should only contain the index, or key.

    By the default the label for each data point only contains the information is not shared with all other data points.
    Information that is shared between all data points is instead included in the axis labels.

    Args:
        models (): A collection of models to plot. A subselection of these models can be made using the *where*
            argument.
        axis_names ():
        where (str): If given will be used to create a subselection of *models*. Any *kwargs* prefixed
            with ``where_`` will be supplied as keyword arguments. See
             [``ModelCollection.where``](simple.models.ModelCollection.where) for more details.
        latex_labels (bool): Whether to use the latex formatting in the labels, when available.
        key (str, int, slice): This can either be a valid index to the *default_attrname* array or the path, with
            or without a valid index, of a different attribute. Accepts either single universal value
            or a list of values, one for each axis (See below for details).
        default_attrname (): The name of the default attribute to use if *xkey* and *ykey* are indexes. By default,
            the default key array is used. Accepts either single universal value or a list of values, one for each
            axis (See below for details).
        unit (): The desired unit for the *xkey* and *ykey*. Different units for *xkey* and *ykey* can be specified
            by supplying a ``(<xkey_unit>, <ykey_unit>)`` sequence. Accepts either single universal value
            or a list of values, one for each axis (See below for details).
        default_value (): The value given to invalid indexes of arrays. Must have a shape compatible with the size
            of the indexed array. Accepts either single universal value
            or a list of values, one for each axis (See below for details).
        key_in_label (bool): Whether to include the key index in the label. Accepts either single universal value
            or a list of values, one for each axis (See below for details).
        numer_in_label (bool): Whether to include the numerator of a key index in the label. Accepts either single
            universal value or a list of values, one for each axis (See below for details).
        denom_in_label (bool): Whether to include the denominator of a key index in the label. Accepts either single
            universal value or a list of values, one for each axis (See below for details).
        model_in_label (bool): Whether to include the model name in the label. Accepts either single universal value
            or a list of values, one for each axis (See below for details).
        unit_in_label (bool): Whether to include the unit in the label. Accepts either single universal value
            or a list of values, one for each axis (See below for details).
        attrname_in_label (bool): Whether to include the attribute name in the label. By default
            the name is only included if it is different from the *default_attrname*. Accepts a single universal
            value or a list of values, one for each axis (See below for details).
        axis_name_in_label (bool): Whether to include the axis name in the label. Accepts either single universal value
            or a value for each axis (See below for details).
        label (str, bool, None): The label for individual datapoints. Accepts either a single universal value or
            a list of values, one per data point (See below for details).
        prefix_label (): Text to be added to the beginning of each data point label. Accepts either a single universal
            value or a list of values, one per data point (See below for details).
        suffix_label (): Text to be added at the end of each data point label. Accepts either a single universal
            value or a list of values, one per data point (See below for details).
        mask (str, int, slice): Can be used to apply a mask to the data which is plotted. See the
            ``get_mask`` function of the Model object. Accepts either a single universal
            value or a list of values, one per model (See below for details).
        mask_na (bool): If ``True`` masked values will be replaced by ``np.nan`` values. Only works if all arrays
            in a dataset have a float based datatype. Accepts either a single universal
            value or a list of values, one per model (See below for details).
        **kwargs:

    One per axis arguments:
        These arguments allow you to set a different value for each axis in *axis_names*. This can be
        either a single value used for all the axis or a sequence of values, one per axis.

        It is also possible to define the value for a specific axis by  including a keyword argument consiting
        of the axis name followed directly by the argument name. The value specified this way will take presidence over
        the value given by the argument itself. For example ``xkey=102Pd`` will set the *key* argument for
        the *x* axis to ``102Pd``.


    One per data point arguments:
        These arguments allow you to set a different value for each data point. The number of data points is
        equal to the number of models multiplied by the number of datasets generated. This can be
        either a single value used for all the axis or a sequence of values, one per data point.


    One per model arguments:
        These arguments allow you to set a different value for each model in *models*. This can be
        either a single value used for all the axis or a sequence of values, one per model.


    Returns:
        Tuple[dict, dict]: Two dictionaries containing:

            - A dictionary with the data points for each model, mapped to the model name

            - A dictionary containing labels for each axis, mapped to the axis name.

    Examples:
        Here is an example of how the return data can be used.
        ```
        model_datapoints, axis_labels = simple.get_data(models, 'x, y', xkey=..., ykey=...)

        # Set the axis labels
        plt.set_xlabel(axis_labels['x'])
        plt.set_ylabel(axis_labels['y'])

        # Iterate though the data and plot it
        for model_name, datapoints in model_datapoints.items():
            for dp in datapoints:
                plt.plot(dp['x'], dp['y'], label=dp['label'])
        ```

    """

    if _kwargs and kwargs:
        raise ValueError('Only one of `kwargs` or `kwargs_` can be specified.')
    else:
        kwargs = _kwargs or kwargs

    where_kwargs = utils.extract_kwargs(kwargs, prefix='where')
    models = get_models(models, where=where, where_kwargs=where_kwargs)

    if type(axis_names) is dict:
        axis_name_args = list(axis_names.keys())
        axis_key_args = list(axis_names.values())
    elif type(axis_names) is str:
        if ',' in axis_names:
            axis_name_args = list(n.strip() for n in axis_names.split(','))
        else:
            axis_name_args = list(n.strip() for n in axis_names.split())
        axis_key_args = None
    else:
        raise TypeError('``axis_name`` must be a string or a dict')

    lenargs = len(axis_name_args)
    lenmodels = len(models)

    def one_per_n(n, n_name, arg_name, arg_value):
        if isinstance(arg_value, str) or not isinstance(arg_value, Sequence):
            return [arg_value for i in range(n)]
        elif len(arg_value) == n:
            if type(arg_value) is list:
                return arg_value
            else:
                return list(arg_value)
        else:
            raise ValueError(f'Length of ``{arg_name}`` ({len(arg_value)}) must be equal to number of {n_name} ({n})')

    def one_per_arg(name, value):
        args = one_per_n(lenargs, 'axis', name, value)

        for i, axis in enumerate(axis_name_args):
            if (k:=f'{axis}{name}') in kwargs:
                args[i] = kwargs.pop(k)
            if (k:=f'{axis}{name}') in kwargs:
                args[i] = kwargs.pop(k)

        return args


    def parse_key_string(key, data_arrays):
        try:
            return utils.asisotopes(key), 'iso'
        except:
            pass

        try:
            return utils.asratios(key), 'rat'
        except:
            pass

        try:
            elements =  utils.aselements(key)
        except:
            raise ValueError(f'Unable to parse "{key}" into a sequence of valid Element, Isotope or Ratio string.')
        else:
            # Because the key list should be the same for all models we need to go through them all here
            # incase some have more or less isotopes in the specified data array
            all_isotopes = ()
            for element in elements:
                element_isotopes = []
                for data in data_arrays:
                    if not isinstance(data, (np.ndarray)) or data.dtype.fields is None:
                        raise ValueError(f'Data array "{attrname}" of model {model.name} is not a key array. '
                                         f'Cannot extract isotope keys.')

                    for iso in utils.get_isotopes_of_element(data.dtype.fields, element):
                        if iso not in element_isotopes:
                            element_isotopes.append(iso)
                all_isotopes += tuple(sorted(element_isotopes, key=lambda iso: float(iso.mass)))
            return all_isotopes, 'iso'

    def get_data_label(keylabels, keys, key_in_label, numer_in_label, denom_in_label):
        labels = []
        for key in keys:
            if type(key) is utils.Isotope:
                if key_in_label:
                    label = keylabels.get(key, f"!{key}")
                else:
                    label = ''
            elif key_in_label:
                if numer_in_label and denom_in_label:
                    label = f'{keylabels.get(key.numer, f"!{key.numer}")}/{keylabels.get(key.denom, f"!{key.denom}")} '
                elif numer_in_label:
                    label = keylabels.get(key.numer, f"!{key.numer}")
                elif denom_in_label:
                    label = keylabels.get(key.denom, f"!{key.denom}")
                else:
                    label = ''
            else:
                label = ''
            labels.append(label)
        return labels

    def get_data_index(data_array, index, mi, ai):
        try:
            return data_array[index]
        except ValueError as error:
            if isinstance(index, str):
                logger.warning(f'{models[mi]}.{attrname_a[ai]}: Missing field "{index}" replaced by the default value ({default_value})')
                return np.full(len(data_array), default_value_args[ai])
            else:
                raise error

    if axis_key_args is None:
        axis_key_args = one_per_arg('key', key)

    default_attrname_args = one_per_arg('default_attrname', default_attrname)
    desired_unit_args = one_per_arg('unit', unit)
    default_value_args = one_per_arg('default_value', default_value)
    key_in_label_args = one_per_arg('key_in_label', key_in_label)
    numer_in_label_args = one_per_arg('numer_in_label', numer_in_label)
    denom_in_label_args = one_per_arg('denom_in_label', denom_in_label)
    model_in_label_args = one_per_arg('model_in_label', model_in_label)
    unit_in_label_args = one_per_arg('unit_in_label', unit_in_label)
    attrname_in_label_args = one_per_arg('attrname_in_label', attrname_in_label)
    axis_name_in_label_args = one_per_arg('axis_name_in_label', axis_name_in_label)

    mask_args = one_per_n(lenmodels, 'models', 'mask', mask)
    mask_na_args = one_per_n(lenmodels, 'models', 'mask_na', mask_na)

    # _a -   [arg1, arg2, ...]
    # _am -  [(arg1_model1, arg1_model2, ...), (arg2_model1, arg2_model2, ...)]
    # _amk - [({arg1_model1_key1, arg1_model1_key2, ...}, {arg1_model2_key1, arg1_model2_key2, ...}), ...]
    attrname_a, keys_ak, keytype_a = [], [], []
    data_arrays_am, data_units_am = [], []
    data_label_am, data_keylabels_am = [], []
    for ai, arg in enumerate(axis_key_args):
        if type(arg) is not str:
            attrname = utils.parse_attrname(default_attrname_args[ai])
            key = arg
        else:
            if arg.startswith('.'):
                m = re.match(r'^([A-Za-z0-9_.]+)(?:\[(.*?)\])?$', arg)
                if m:
                    attrname = utils.parse_attrname(m.group(1))
                    key = m.group(2)
                    if attrname_in_label_args[ai] is None:
                        attrname_in_label_args[ai] = True
                else:
                    raise ValueError(f'Invalid arg: {key}')
            else:
                attrname = utils.parse_attrname(default_attrname_args[ai])
                key = arg

        if attrname_in_label_args[ai] is None and attrname is None:
            attrname_in_label_args[ai] = True

        attrname_a.append(attrname)

        # Here we get all the data arrays
        # For this we only need the attrname
        data_arrays_am.append([])
        data_units_am.append([])
        data_label_am.append([])
        data_keylabels_am.append([])
        for model in models:
            data, data_unit = model.get_array(attrname, desired_unit_args[ai])
            data_arrays_am[-1].append(data)
            data_units_am[-1].append(data_unit)

            attr_label, key_labels = model.get_array_labels(attrname, latex=latex_labels)
            data_label_am[-1].append(attr_label)
            data_keylabels_am[-1].append(key_labels)


        # Parse the key
        # Is the key is an element symbol it will extract all isotopes of that element from the data
        # Hence why we need to get the data arrays before this step
        if type(key) is str:
            # Check if key is an integer index or slice
            m = re.match(r'^\s*(-?\d+)\s*$|^\s*(-?\d*)\s*:\s*(-?\d*)\s*(?::\s*(-?\d*))?\s*$', key)
            if m:
                if m.group(1):
                    key = int(m.group(1))
                else:  # Slice
                    key = slice(int(m.group(2)) if m.group(2) is not None else None,
                                int(m.group(3)) if m.group(3) is not None else None,
                                int(m.group(4)) if m.group(4) is not None else None)
                key = (key,)
                keytype = 'index'

            else:
                key, keytype = parse_key_string(key, data_arrays_am[-1])
        elif type(key) is int or type(key) is slice:
            key = (key,)
            keytype = 'index'
        elif key is None:
            key = (key, )
            keytype = 'none'
        else:
            key, keytype = parse_key_string(key, data_arrays_am[-1])

        keys_ak.append(key)
        keytype_a.append(keytype)

    # Make sure the size of the keys is the same for all args
    size = {len(k) for k in keys_ak}
    size.discard(1)
    if len(size) > 1:
        raise ValueError(f'Length of indexes for not compatible {[len(k) for k in attrname_a]}')
    elif len(size) == 1:
        lenkeys = size.pop()
    else:
        lenkeys = 1

    for ai in range(lenargs):
        if len(keys_ak[ai]) != lenkeys:
            # current size can only be 1. Repeat until it is the correct length
            keys_ak[ai] = [keys_ak[ai][0] for i in range(lenkeys)]

    axis_label_args = [kwargs.pop(f'{name}label', True) for name in axis_name_args]
    axis_prefix_label_args = [kwargs.pop(f'{name}prefix_label', '') for name in axis_name_args]
    axis_suffix_label_args = [kwargs.pop(f'{name}suffix_label', '') for name in axis_name_args]
    label_args = one_per_n(lenmodels * lenkeys, 'datapoints', 'label', label)
    prefix_label_args = one_per_n(lenmodels * lenkeys, 'datapoints', 'prefix_label', prefix_label)
    suffix_label_args = one_per_n(lenmodels * lenkeys, 'datapoints', 'suffix_label', suffix_label)

    result_data = {}
    result_axis_label = {}
    data_labels_amk = []

    # Get the arg label which can be used as an axis label
    # Get the data point label for each arg. These are all combined later
    # Model name is not added. It will be added once the individual arg labels have been joined
    for ai in range(lenargs):
        keys = keys_ak[ai]
        keytype = keytype_a[ai]

        # Find common keys that can go into the arg label
        if keytype == 'iso':
            unique_keylabels = set()
            for mi, keylabels in enumerate(data_keylabels_am[ai]):
                if keylabels is None:
                    raise ValueError(f"Data array '{attrname_a[ai]}' of model '{models[mi].name}' is not a key array.")
                unique_keylabels = {*unique_keylabels, *(keylabels.get(k, None) for k in keys)}

            unique_keylabels.discard(None)
            if len(unique_keylabels) == 1: # Same label for all data points
                arg_label = unique_keylabels.pop()
                if key_in_label_args[ai] is None:
                    key_in_label_args[ai] = False
                if axis_name_in_label_args[ai] is None:
                    axis_name_in_label_args[ai] = False
            else:
                arg_label = f"<{axis_name_args[ai]}>"
                if key_in_label_args[ai] is None:
                    key_in_label_args[ai] = True
                if axis_name_in_label_args[ai] is None:
                    axis_name_in_label_args[ai] = True

        elif keytype == 'rat':
            unique_n_keylabels = {}
            unique_d_keylabels = {}
            for keylabels in data_keylabels_am[ai]:
                if keylabels is None:
                    raise ValueError(f"Data array '{attrname[ai]}' of model '{models[ai].name}' is not a key array.")

                unique_n_keylabels = {*unique_n_keylabels, *(keylabels.get(k.numer, None) for k in keys)}
                unique_d_keylabels = {*unique_d_keylabels, *(keylabels.get(k.denom, None) for k in keys)}

            unique_n_keylabels.discard(None)
            unique_d_keylabels.discard(None)

            if key_in_label_args[ai] is not None:
                if numer_in_label_args[ai] is None:
                    numer_in_label_args[ai] = key_in_label_args[ai]
                if denom_in_label_args[ai] is None:
                    denom_in_label_args[ai] = key_in_label_args[ai]

            if len(unique_n_keylabels) == 1 and len(unique_d_keylabels) == 1:
                arg_label = f"{unique_n_keylabels.pop()} / {unique_d_keylabels.pop()}"
                if key_in_label_args[ai] is None:
                    key_in_label_args[ai] = False
                if numer_in_label_args[ai] is None:
                    numer_in_label_args[ai] = False
                if denom_in_label_args[ai] is None:
                    denom_in_label_args[ai] = False
                if axis_name_in_label_args[ai] is None:
                    axis_name_in_label_args[ai] = False
            elif len(unique_n_keylabels) == 1:
                arg_label = f'{unique_n_keylabels.pop()} / <{axis_name_args[ai]}>'
                if key_in_label_args[ai] is None:
                    key_in_label_args[ai] = True
                if numer_in_label_args[ai] is None:
                    numer_in_label_args[ai] = False
                if denom_in_label_args[ai] is None:
                    denom_in_label_args[ai] = True
                if axis_name_in_label_args[ai] is None:
                    axis_name_in_label_args[ai] = True
            elif len(unique_d_keylabels) == 1:
                arg_label = f"<{axis_name_args[ai]}> / {unique_d_keylabels.pop()}"
                if key_in_label_args[ai] is None:
                    key_in_label_args[ai] = True
                if numer_in_label_args[ai] is None:
                    numer_in_label_args[ai] = True
                if denom_in_label_args[ai] is None:
                    denom_in_label_args[ai] = False
                if axis_name_in_label_args[ai] is None:
                    axis_name_in_label_args[ai] = True
            else:
                arg_label = f"<{axis_name_args[ai]}>"
                if key_in_label_args[ai] is None:
                    key_in_label_args[ai] = True
                if numer_in_label_args[ai] is None:
                    numer_in_label_args[ai] = True
                if denom_in_label_args[ai] is None:
                    denom_in_label_args[ai] = True
                if axis_name_in_label_args[ai] is None:
                    axis_name_in_label_args[ai] = True

        else:
            arg_label = ''

            # Neither are possible so just set to False
            key_in_label_args[ai] = False
            axis_name_in_label_args[ai] = False

        # Create labels for each key
        data_labels_amk.append([])
        if keytype == 'iso' or keytype == 'rat':
            for keylabels in data_keylabels_am[ai]:
                data_labels_amk[-1].append(get_data_label(keylabels, keys,
                                                          key_in_label_args[ai], numer_in_label_args[ai], denom_in_label_args[ai]))
                if attrname_in_label_args[ai] is None:
                    attrname_in_label_args[ai] = False

        else:
            # No keys so just creates an empty label
            data_labels_amk[-1].extend([['' for i in range(lenkeys)] for j in range(lenmodels)])
            if attrname_in_label_args[ai] is None:
                attrname_in_label_args[ai] = True

        # Add the unit either to arg label if common across all models or to each key label
        # [unit] added to the end of the string
        if unit_in_label_args[ai] is not False:
            unique_data_units = {*data_units_am[ai]}
            unique_data_units.discard(None)
            if len(unique_data_units) == 1:
                arg_label = f'{arg_label} [{unique_data_units.pop()}]'
            elif len(unique_data_units) > 1:
                for mi, arg_data_labels_k in enumerate(data_labels_amk[-1]):
                    for ki, key in enumerate(arg_data_labels_k):
                        if data_units_am[ai][mi] is not None:
                            data_labels_amk[-1][mi][ki] = f'{key} [{data_units_am[ai][mi]}]'.strip()

        # Add the attrname either to arg label if common across all models or to each key label
        # arrname added to the start of the string
        if attrname_in_label_args[ai]:
            unique_data_label = {*data_label_am[ai]}
            unique_data_label.discard(None)
            if len(unique_data_label) == 1:
                if arg_label == '':
                    arg_label = unique_data_label.pop().strip()
                else:
                    arg_label = f'{unique_data_label.pop()} | {arg_label}'.strip()
            elif len(unique_data_label) > 1:
                for mi, arg_data_labels_k in enumerate(data_labels_amk[-1]):
                    for ki, key in enumerate(arg_data_labels_k):
                        if data_label_am[ai][mi] is not None:
                            if key == '':
                                data_labels_amk[-1][mi][ki] = data_label_am[ai][mi].strip()
                            else:
                                data_labels_amk[-1][mi][ki] = f'{data_label_am[ai][mi]} | {key}'.strip()

        axis_label_arg = axis_label_args[ai]
        if axis_label_arg is True:
            prefix = axis_prefix_label_args[ai]
            suffix = axis_suffix_label_args[ai]
            if prefix:
                arg_label = f"{prefix}{arg_label}"
            if suffix:
                arg_label = f"{arg_label}{suffix}"

            result_axis_label[axis_name_args[ai]] = arg_label or None
        else:
            result_axis_label[axis_name_args[ai]] = axis_label_arg or None

    for mi in range(lenmodels):
        results = []
        for ki in range(lenkeys):
            results.append({})

            label = ''
            for ai in range(lenargs):
                data_array = data_arrays_am[ai][mi]
                keytype = keytype_a[ai]

                if keytype == 'rat':
                    key = keys_ak[ai][ki]
                    n = get_data_index(data_array, key.numer, mi, ai)
                    d = get_data_index(data_array, key.denom, mi, ai)
                    data = n/d

                elif keytype == 'iso' or keytype == 'index':
                    key = keys_ak[ai][ki]
                    data = get_data_index(data_array, key, mi, ai)
                else: # keytype == 'none'
                    data = data_array

                results[-1][axis_name_args[ai]] = data

                data_label = data_labels_amk[ai][mi][ki].strip()
                if data_label != '':
                    if axis_name_in_label_args[ai]:
                        label += f"<{axis_name_args[ai]}: {data_label}>"
                    else:
                        label += data_label

            if mask_args[mi] is not None:
                imask = models[mi].get_mask(mask, **results[-1])
                if mask_na_args[mi] and False not in (np.issubdtype(v.dtype, np.floating) for v in results[-1].values()):
                    for k, v in results[-1].items():
                        v = v.copy()
                        v[np.logical_not(imask)] = np.nan
                        results[-1][k] = v
                else:
                    for k, v in results[-1].items():
                        results[-1][k] = v[imask]

            label_arg = label_args[(mi * lenkeys) + ki]
            if label_arg is True:
                prefix = prefix_label_args[mi * lenkeys + ki]
                suffix = suffix_label_args[mi * lenkeys + ki]

                if model_in_label_args[ai] or (model_in_label_args[ai] is None and lenmodels > 1):
                    if label == '':
                        label = models[mi].name
                    else:
                        label = f'{label} ({models[mi].name})'.strip()
                if type(prefix) is str:
                    label = f"{prefix}{label}"
                if type(suffix) is str:
                    label = f"{label}{suffix}"

                results[-1]['label'] = label.strip() or None
            else:
                results[-1]['label'] = label_arg or None

        result_data[models[mi].name] = tuple(results)

    return result_data, result_axis_label

simple.get_isotopes_of_element

get_isotopes_of_element(isotopes, element, isotopes_without_suffix=False)

Returns a tuple of all isotopes in a sequence that contain the given element symbol.

Note The strings in isotopes will be passed through asisotopes before the evaluation and therefore do not have to be correcly formatted. Invalid isotope string are allowed but will be ignored by the evaluation.

Parameters:

  • isotopes

    An iterable of strings representing isotopes.

  • element (str) –

    The element symbol.

  • suffix (str) –

    If given the isotopes must also have this suffix.

  • isotopes_without_suffix (bool, default: False ) –

    If True suffixes will be removed from the isotopes in isotopes before the evaluation takes place.

Examples:

>>> simple.utils.get_isotopes_of_element(["Ru-101", "Pd-102", "Rh-103", "Pd-104"], "Pd")
>>> ("Pd-102", "Pd-104")
Source code in simple/utils.py
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
def get_isotopes_of_element(isotopes, element, isotopes_without_suffix=False):
    """
    Returns a tuple of all isotopes in a sequence that contain the given element symbol.

    **Note** The strings in ``isotopes`` will be passed through [asisotopes][simple.asisotopes] before
    the evaluation and therefore do not have to be correcly formatted. Invalid isotope string are allowed
    but will be ignored by the evaluation.

    Args:
        isotopes (): An iterable of strings representing isotopes.
        element (str): The element symbol.
        suffix (str): If given the isotopes must also have this suffix.
        isotopes_without_suffix (bool): If ``True`` suffixes will be removed from the isotopes in ``isotopes``
            before the evaluation takes place.

    Examples:
        >>> simple.utils.get_isotopes_of_element(["Ru-101", "Pd-102", "Rh-103", "Pd-104"], "Pd")
        >>> ("Pd-102", "Pd-104")
    """
    isotopes = asisolist(isotopes, without_suffix=isotopes_without_suffix, allow_invalid=True)
    element = aselement(element)
    return tuple(iso for iso in isotopes if (type(iso) is Isotope and iso.element == element))

simple.load_collection

load_collection(filename, dbfilename=None, *, default_isolist=None, convert_unit=True, overwrite=False, where=None, **where_kwargs)

Loads a selection of models from a file.

If that file does not exist it will create the file from the specified models file. Only when doing this is the default_isolist applied. If filename already exits the assumption is it has the correct isolist.

*Notes

The entire file will be read into memory. This might be an issue if reading very large files. The hdf5 are compressed so will be significantly larger when stored in memory.

When reading the database file to create a subselection of the data using default_isolist, the subselection is made when each model is loaded which reduces the amount of memory used.

Parameters:

  • filename (str) –

    Name of the file to load or create.

  • dbfilename (str, default: None ) –

    Name of the raw models file

  • default_isolist

    Isolist applied to loaded models from dbfilename.

  • convert_units (bool) –

    If True and data is stored in a mass unit all values will be divided by the mass number of the isotope before summing values together. The final value is then multiplied by the mass number of the output isotope.

  • overwrite (bool, default: False ) –

    If True a new file will be created even if filename already exists.

  • where (str, default: None ) –

    Used to select which models to load.

  • **where_kwargs

    Keyword arguments used in combination with where.

Returns:

Source code in simple/models.py
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def load_collection(filename, dbfilename=None, *, default_isolist=None, convert_unit=True, overwrite=False,
                    where=None, **where_kwargs):
    """
    Loads a selection of models from a file.

    If that file does not exist it will create the file from the specified models file. Only when doing this
    is the ``default_isolist`` applied. If ``filename`` already exits the **assumption** is it has the correct isolist.

    ***Notes**

    The entire file will be read into memory. This might be an issue if reading very large files. The hdf5 are
    compressed so will be significantly larger when stored in memory.

    When reading the database file to create a subselection of the data using ``default_isolist``, the subselection is
     made when each model is loaded which reduces the amount of memory used.

    Args:
        filename (str): Name of the file to load or create.
        dbfilename (str): Name of the raw models file
        default_isolist (): Isolist applied to loaded models from ``dbfilename``.
        convert_units (bool): If ``True``  and data is stored in a mass unit all values will be divided by the
            mass number of the isotope before summing values together. The final value is then multiplied by the
            mass number of the output isotope.
        overwrite (bool): If ``True`` a new file will be created even if ``filename`` already exists.
        where (str): Used to select which models to load.
        **where_kwargs (): Keyword arguments used in combination with ``where``.

    Returns:
        A [ModelCollection][simple.models.ModelCollection] object containing all the loaded models.
    """
    mc = ModelCollection()
    if os.path.exists(filename) and not overwrite:
        logger.info(f'Loading existing file: {filename}')
        mc.load_file(filename, where=where, **where_kwargs)
    elif filename[-5:].lower() != '.hdf5' and os.path.exists(f'{filename}.hdf5') and not overwrite:
        logger.info(f'Loading existing file: {filename}.hdf5')
        mc.load_file(f'{filename}.hdf5', where=where, **where_kwargs)
    elif dbfilename is None:
        raise ValueError(f'File {filename} does not exist')
    elif os.path.exists(dbfilename):
        logger.info(f'Creating: "{filename}" from database: "{dbfilename}"')
        mc.load_file(dbfilename, isolist=default_isolist, convert_unit=convert_unit, where=where, **where_kwargs)
        mc.save(filename)
    else:
        raise ValueError(f'Neither "{filename}" or "{dbfilename}" exist')
    return mc

simple.load_defaults

load_defaults(filename)

Loads default arguments for functions from a YAML formatted file.

To use a set of default values, unpack the arguments in the function call (See example).

You can still arguments and keyword arguments as normal as long as they are not included in the default dictionary.

Returns:

  • A named dictionary containing mapping the prefixes given in the yaml file to another dictionary mapping the arguments

  • to the specified values.

Examples:

The file default.yaml is expected to look like this:

somefunction:
    arg: value
    listarg:
        - first thing in list
        - second thing in list

anotherfunction:
    arg: value

It can be used like this

>>> defaults = simple.load_defaults('defaults.yaml')
>>> somefunction(**defaults['somefunction']) # Unpack arguments into function call
Source code in simple/utils.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def load_defaults(filename: str):
    """
    Loads default arguments for functions from a YAML formatted file.

    To use a set of default values, unpack the arguments in the function call (See example).

    You can still arguments and keyword arguments as normal as long as they are not included in the default dictionary.

    Returns:
        A named dictionary containing mapping the prefixes given in the yaml file to another dictionary mapping the arguments
        to the specified values.

    Examples:
        The file ``default.yaml`` is expected to look like this:
        ```
        somefunction:
            arg: value
            listarg:
                - first thing in list
                - second thing in list

        anotherfunction:
            arg: value
        ```

        It can be used like this
        >>> defaults = simple.load_defaults('defaults.yaml')
        >>> somefunction(**defaults['somefunction']) # Unpack arguments into function call


    """
    return dict(yaml.safe_load(open(filename, 'r').read()))

simple.mcontour

mcontour(models, xkey, ykey, r=None, weights=1, *, default_attrname=None, unit=None, weights_default_attrname=None, weights_unit=None, weights_default_value=0, mask=None, ax=None, where=None, where_kwargs={}, legend=None, update_ax=True, update_fig=True, **kwargs)

Contour plot on a rose diagram.

Source code in simple/plotting.py
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
@utils.add_shortcut('stdnorm', default_attrname ='stdnorm.Ri', unit=None)
@utils.add_shortcut('intnorm', default_attrname='intnorm.eRi', unit=None)
@utils.set_default_kwargs(
    ax_kw_ylabel_labelpad=20,
    legend_outside=True,
    rose_colorbar_show=False, bar_outline=True,
    linestyle=True, color=True, marker=False,
    fixed_model_linestyle = None, fixed_model_color = None, fixed_model_marker = None
)
def mcontour(models, xkey, ykey, r=None, weights=1, *,
             default_attrname = None, unit=None,
             weights_default_attrname = None, weights_unit=None, weights_default_value=0,
             mask = None, ax = None, where=None, where_kwargs={},
             legend=None, update_ax = True, update_fig = True,
             **kwargs):
    """
    Contour plot on a rose diagram.
    """
    ax, models, r, modeldata_xy, modeldata_w, kwargs = _mprep(models, xkey, ykey, r, weights,
                                                            default_attrname=default_attrname, unit=unit,
                                                            weights_default_attrname=weights_default_attrname,
                                                            weights_unit=weights_unit, weights_default_value=weights_default_value,
                                                            mask=mask, ax=ax, where=where, where_kwargs=where_kwargs,
                                                            **kwargs)

    return _mcontour(ax, r, modeldata_xy, modeldata_w, legend=legend, update_ax=update_ax, update_fig=update_fig, **kwargs)

simple.mcontour_ccsne

mcontour_ccsne(models, xkey, ykey, r=None, weights=1, **kwargs)

Contour plot on a rose diagram for CCNSe models.

Source code in simple/ccsne.py
760
761
762
763
764
765
766
767
768
769
770
771
772
@utils.add_shortcut('abundance', default_attrname='abundance', unit='mass', xunit=None)
@utils.add_shortcut('intnorm', default_attrname='intnorm.eRi', unit=None, xunit=None)
@utils.add_shortcut('stdnorm', default_attrname='stdnorm.Ri', unit=None, xunit=None)
@utils.set_default_kwargs(inherits=plotting.mcontour,
    weights_default_attrname='abundance', weights_unit='mass',
)
def mcontour_ccsne(models, xkey, ykey, r=None, weights=1, **kwargs):
    """
    Contour plot on a rose diagram for CCNSe models.
    """
    ax, models, r, modeldata_xy, modeldata_w, kwargs = plotting._mprep(models, xkey, ykey, r, weights, **kwargs)
    modeldata_w = _mweights(models, modeldata_w)
    return plotting._mcontour(ax, r, modeldata_xy, modeldata_w, **kwargs)

simple.mhist

mhist(models, xkey, ykey, r=None, weights=1, *, default_attrname=None, unit=None, weights_default_attrname=None, weights_unit=None, weights_default_value=0, mask=None, ax=None, where=None, where_kwargs={}, legend=None, update_ax=True, update_fig=True, **kwargs)

Histogram plot on a rose diagram.

Source code in simple/plotting.py
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
@utils.add_shortcut('stdnorm', default_attrname ='stdnorm.Ri', unit=None)
@utils.add_shortcut('intnorm', default_attrname='intnorm.eRi', unit=None)
@utils.set_default_kwargs(
    ax_kw_ylabel_labelpad=20,
    rose_colorbar_show=True,
    legend_outside=True,)
def mhist(models, xkey, ykey, r=None, weights=1, *,
          default_attrname = None, unit=None,
          weights_default_attrname = None, weights_unit=None, weights_default_value=0,
          mask = None, ax = None, where=None, where_kwargs={},
          legend=None, update_ax = True, update_fig = True,
          **kwargs):
    """
    Histogram plot on a rose diagram.
    """
    ax, models, r, modeldata_xy, modeldata_w, kwargs = _mprep(models, xkey, ykey, r, weights,
                                                      default_attrname=default_attrname, unit=unit,
                                                      weights_default_attrname=weights_default_attrname,
                                                      weights_unit=weights_unit, weights_default_value=weights_default_value,
                                                      mask=mask, ax=ax, where=where, where_kwargs=where_kwargs,
                                                      **kwargs)

    return _mhist(ax, r, modeldata_xy, modeldata_w, legend=legend, update_ax=update_ax, update_fig=update_fig, **kwargs)

simple.mhist_ccsne

mhist_ccsne(models, xkey, ykey, r=None, weights=1, **kwargs)

Histogram plot on a rose diagram for CCNSe models.

Source code in simple/ccsne.py
746
747
748
749
750
751
752
753
754
755
756
757
758
@utils.add_shortcut('abundance', default_attrname='abundance', unit='mass', xunit=None)
@utils.add_shortcut('intnorm', default_attrname='intnorm.eRi', unit=None, xunit=None)
@utils.add_shortcut('stdnorm', default_attrname='stdnorm.Ri', unit=None, xunit=None)
@utils.set_default_kwargs(inherits=plotting.mhist,
    weights_default_attrname='abundance', weights_unit='mass',
)
def mhist_ccsne(models, xkey, ykey, r=None, weights=1, **kwargs):
    """
    Histogram plot on a rose diagram for CCNSe models.
    """
    ax, models, r, modeldata_xy, modeldata_w, kwargs = plotting._mprep(models, xkey, ykey, r, weights, **kwargs)
    modeldata_w = _mweights(models, modeldata_w)
    return plotting._mhist(ax, r, modeldata_xy, modeldata_w, **kwargs)

simple.new_collection

new_collection()

Return an empty ModelCollection object.

Source code in simple/models.py
91
92
93
94
95
def new_collection():
    """
    Return an empty [ModelCollection][simple.models.ModelCollection] object.
    """
    return ModelCollection()

simple.plot

plot(models, xkey, ykey, *, default_attrname=None, unit=None, where=None, mask=None, mask_na=True, ax=None, legend=None, update_ax=True, update_fig=True, **kwargs)

Plot xkey against ykey for each model in `models.

It is possible to plot multiple datasets if xkey and/or ykey is a list of multiple keys for a isotope key array. If only one of the arguments is a list then the second argument will be reused for each dataset. If a key is not present in an array then a default value is used. See get_data for more details.

The data to be plotted is retrieved using the get_data function. All arguments available for that function not included in the argument list here can be given as one of the kwargs to this function.

The data will be plotted using matplotlib's plot function. Additional arguments to this function can be passed as one of the kwargs to this function. Some plot arguments have enhanced behaviour detailed in a section below.

Parameters:

  • models

    A collection of models to plot. A subselection of these models can be made using the where argument.

  • xkey, (ykey (str, int, slice) –

    This can either be a valid index to the default_attrname array or the path, with or without a valid index, of a different attribute. See get_data for more details.

  • default_attrname (str, default: None ) –

    The name of the default attribute to use if xkey and ykey are indexes.

  • unit (str, default: None ) –

    The desired unit for the xkey and ykey. Different units for xkey and ykey can be specified by supplying a (<xkey_unit>, <ykey_unit>) sequence.

  • where (str, default: None ) –

    If given will be used to create a subselection of models. Any kwargs prefixed with where_ will be supplied as keyword arguments. See ModelCollection.where for more details.

  • mask ((str, int, slice), default: None ) –

    Can be used to apply a mask to the data which is plotted. See the get_mask function of the Model object.

  • mask_na (bool, default: True ) –

    If True masked values will be replaced by np.nan values. Only works if both xkey and ykey have a float based datatype.

  • ax

    The axes where the data is plotted. Accepted values are any matplotlib Axes object or plt instance. Defaults to plt.gca().

  • legend (bool, default: None ) –

    Whether to create a legend. By default, a legend will be created if one or more datapoints have a valid label.

  • update_ax, (update_fig (bool) –

    Whether to update the axes and figure objects using kwargs that have the prefix ax_ and fig_. See simple.plotting.update_axes for more details.

  • **kwargs

    Valid keyword arguments are those using one of the prefixes define by other arguments, any argument for the simple.get_data function, or any valid keyword argument for matplotlib's plot function.

Data and axis labels

Labels for each axis and individual datapoints will be automatically generated. By default, the axis labels will contain the information common to all datasets while the label for the individual datapoints will contain only the unique information. You can override the axis labels by passing ax_xlabel and ax_ylabel as one of the kwargs. You can also override the datapoint labels by passing a list of labels, one each for each datapoint in the legend. See get_data for more details on customising the labels.

Iterable plot arguments

The following arguments for matplotlibs plot function have enhanced behaviour that allows them to be iterated through when plotting different models and/or datasets.

  • linestyle Can be a list of linestyles that will be iterated through. If True simple's predefined list of linestyles is used. If False no lines will be shown.

  • color Can be a list of colors that will be iterated through. If True simple's predefined list of colors is used. If False the colour defaults to black.

  • marker Can be a list of markers that will be iterated through. If True simple's predefined list of markers is used. If False no markers will be shown.

There are two ways these values can be iterated through. Either all the datapoints of a given model gets the same value or each set of datapoints across the different models gets the same value. By default, if there are multiple models then all the datasets for each model will have the same color. If there is only one model then the color will be different for the different datasets. If there are multiple datasets then each dataset across the different models will have the same linestyle and marker. If there is only one dataset then linestyle and marker will be different for each model.

This behaviour can be changed by passing fixed_model_linestyle, fixed_model_color and fixed_model_marker keyword arguments set to either True or False If True each model will have the same value. If False each dataset across the different models will have the same value.

Default kwargs and shortcuts

The default values for arguments can be updated by changing the plot.default_kwargs dictionary. Any argument not defined in the function description will be included in kwargs. Default values given in the function definition will be used only if a default value does not exist in plot.default_kwargs. Additionally, one or more shortcuts with additional/different default values are attached to this function. The following shortcuts exist for this function:

  • plot.intnorm Default values to plot internally normalised data. This sets default_attrname to intnorm and the default_unit to None.

  • plot.stdnorm Default values to plot the basic ratio normalised data. This sets default_attrname to stdnorm and the default_unit to None.

Returns:

  • The axes where the data was plotted.

Source code in simple/plotting.py
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
@utils.add_shortcut('abundance', default_attrname ='abundance', unit=None)
@utils.add_shortcut('stdnorm', default_attrname ='stdnorm.Ri', unit=None)
@utils.add_shortcut('intnorm', default_attrname='intnorm.eRi', unit=None)
@utils.set_default_kwargs(
    linestyle=False, color=True, marker=True,
    fixed_model_linestyle = None, fixed_model_color = None, fixed_model_marker = None,
    ax_kw_xlabel_fontsize=15,
    ax_kw_ylabel_fontsize=15,
    markersize=4,
    legend_outside=True,
    ax_tick_params=dict(axis='both', left=True, right=True, top=True),
    fig_size=(7,6.5),
    )
def plot(models, xkey, ykey, *,
         default_attrname=None, unit=None,
         where=None, mask = None, mask_na = True, ax = None,
         legend = None, update_ax = True, update_fig = True,
         **kwargs):
    """
    Plot *xkey* against *ykey* for each model in `*models*.

    It is possible to plot multiple datasets if *xkey* and/or *ykey* is a list of multiple keys for a isotope key
    array. If only one of the arguments is a list then the second argument will be reused for each dataset. If a key
    is not present in an array then a default value is used. See [``get_data``](simple.get_data) for more details.

    The data to be plotted is retrieved using the [``get_data``](simple.get_data) function. All arguments available
    for that function not included in the argument list here can be given as one of the *kwargs* to this function.

    The data will be plotted using matplotlib's ``plot`` function. Additional arguments to this function can be
    passed as one of the *kwargs* to this function. Some  ``plot`` arguments have enhanced behaviour detailed in a
    section below.

    Args:
        models (): A collection of models to plot. A subselection of these models can be made using the *where*
            argument.
        xkey, ykey (str, int, slice): This can either be a valid index to the *default_attrname* array or the path, with
            or without a valid index, of a different attribute. See [``get_data``](simple.get_data) for more details.
        default_attrname (str): The name of the default attribute to use if *xkey* and *ykey* are indexes.
        unit (str): The desired unit for the *xkey* and *ykey*. Different units for *xkey* and *ykey* can be specified
            by supplying a ``(<xkey_unit>, <ykey_unit>)`` sequence.
        where (str): If given will be used to create a subselection of *models*. Any *kwargs* prefixed
            with ``where_`` will be supplied as keyword arguments. See
             [``ModelCollection.where``](simple.models.ModelCollection.where) for more details.
        mask (str, int, slice): Can be used to apply a mask to the data which is plotted. See the ``get_mask`` function of the Model
            object.
        mask_na (bool): If ``True`` masked values will be replaced by ``np.nan`` values. Only works if both *xkey* and
            *ykey* have a float based datatype.
        ax (): The axes where the data is plotted. Accepted values are any matplotlib Axes object or plt instance.
            Defaults to ``plt.gca()``.
        legend (bool): Whether to create a legend. By default, a legend will be created if one or more datapoints have
            a valid label.
        update_ax, update_fig (bool): Whether to update the axes and figure objects using kwargs that have the prefix
            ``ax_`` and ``fig_``. See [``simple.plotting.update_axes``](simple.plotting.update_axes) for more details.
        **kwargs ():
            Valid keyword arguments are those using one of the prefixes define by other arguments, any argument
            for the [``simple.get_data``](simple.get_data) function, or any valid keyword argument for
            matplotlib's ``plot`` function.

    Data and axis labels:
        Labels for each axis and individual datapoints will be automatically generated. By default, the axis labels
        will contain the information common to all datasets while the label for the individual datapoints will contain
        only the unique information. You can override the axis labels by passing ``ax_xlabel`` and ``ax_ylabel`` as
        one of the *kwargs*. You can also override the datapoint labels by passing a list of labels, one each
        for each datapoint in the legend. See [``get_data``](simple.get_data) for more details on customising the
        labels.


    Iterable plot arguments:
        The following arguments for matplotlibs ``plot`` function have enhanced behaviour that allows them to be
        iterated through when plotting different models and/or datasets.

        - ``linestyle`` Can be a list of linestyles that will be iterated through. If ``True`` simple's predefined
        list of linestyles is used. If ``False`` no lines will be shown.

        - ``color`` Can be a list of colors that will be iterated through. If ``True`` simple's predefined
        list of colors is used. If ``False`` the colour defaults to black.

        - ``marker`` Can be a list of markers that will be iterated through. If ``True`` simple's predefined
        list of markers is used. If ``False`` no markers will be shown.

        There are two ways these values can be iterated through. Either all the datapoints of a given model gets the
        same value or each set of datapoints across the different models gets the same value. By default, if there are
        multiple models then all the datasets for each model will have the same *color*. If there is only one model
        then the color will be different for the different datasets. If there are multiple datasets then each dataset
        across the different models will have the same *linestyle* and *marker*. If there is only one dataset then
        *linestyle* and *marker* will be different for each model.

        This behaviour can be changed by passing ``fixed_model_linestyle``, ``fixed_model_color``
        and ``fixed_model_marker`` keyword arguments set to either ``True`` or ``False`` If ``True`` each model will
        have the same value. If ``False`` each dataset across the different models will have the same value.

    Default kwargs and shortcuts:
        The default values for arguments can be updated by changing the  ``plot.default_kwargs`` dictionary. Any
        argument not defined in the function description will be included in *kwargs*. Default values given in the
        function definition will be used only if a default value does not exist in ``plot.default_kwargs``.
        Additionally, one or more shortcuts with additional/different default values are attached to this function.
        The following shortcuts exist for this function:

        - ``plot.intnorm`` Default values to plot internally normalised data. This sets *default_attrname* to
            ``intnorm`` and the ``default_unit`` to ``None``.

        - ``plot.stdnorm`` Default values to plot the basic ratio normalised data. This sets
                *default_attrname* to ``stdnorm`` and the ``default_unit`` to ``None``.

    Returns:
        The axes where the data was plotted.
    """
    ax = get_axes(ax)  # We are working on the axes object proper

    where_kwargs = utils.extract_kwargs(kwargs, prefix='where')
    models = get_models(models, where=where, where_kwargs=where_kwargs)

    # Get the linestyle, color and marker for each thing to be plotted.
    linestyles, colors, markers = parse_lscm(kwargs.pop('linestyle', True),
                                             kwargs.pop('color', True),
                                             kwargs.pop('marker', False))
    fixed_model_linestyle = kwargs.pop('fixed_model_linestyle', None)
    fixed_model_color = kwargs.pop('fixed_model_color', None)
    fixed_model_marker = kwargs.pop('fixed_model_marker', None)

    legend_kwargs = utils.extract_kwargs(kwargs, prefix='legend')

    label_kwargs = utils.extract_kwargs(kwargs, 'label', 'prefix_label', 'suffix_label',
                                        'key_in_label', 'numer_in_label', 'denom_in_label',
                                        'model_in_label', 'unit_in_label', 'attrname_in_label')

    # If there is only one model it is set as the title to make the legend shorter
    model_in_label = label_kwargs.pop('model_in_label', None)
    if len(models) == 1 and model_in_label is None:
        label_kwargs['model_in_label'] = False
        legend_kwargs.setdefault('title', models[0].name)
    else:
        label_kwargs['model_in_label'] = model_in_label


    modeldata, axis_labels = get_data(models, {'x': xkey, 'y': ykey},
                                      default_attrname=default_attrname, unit=unit,
                                      mask=mask, mask_na=mask_na, _kwargs=kwargs, **label_kwargs)

    kwargs.setdefault('ax_xlabel', axis_labels['x'])
    kwargs.setdefault('ax_ylabel', axis_labels['y'])
    delayed_kwargs = update_axes(ax, kwargs, delay='ax_legend', update_ax=update_ax, update_fig=update_fig)

    mfc = kwargs.pop('markerfacecolor', None)

    has_labels = False
    for mi, (model_name, model_dataset) in enumerate(modeldata.items()):
        for ki, key_data in enumerate(model_dataset):
            if fixed_model_linestyle or (fixed_model_linestyle is None and len(model_dataset) == 1):
                ls = linestyles[mi]
            else:
                ls = linestyles[ki]
            if fixed_model_color is True or (fixed_model_color is None and len(modeldata) > 1):
                c = colors[mi]
            else:
                c = colors[ki]
            if fixed_model_marker is True or (fixed_model_marker is None and len(model_dataset) == 1):
                m = markers[mi]
            else:
                m = markers[ki]

            if not has_labels and key_data.get('label', None):
                has_labels = True

            ax.plot(key_data['x'], key_data['y'],
                    label = key_data.get('label', None),
                    color=c, ls=ls, marker=m,
                    markerfacecolor=mfc or c,
                    **kwargs)

    update_axes(ax, delayed_kwargs, update_ax=update_ax, update_fig=update_fig)
    if legend or (legend is None and has_labels):
        create_legend(ax, **legend_kwargs)

    return ax

simple.plot_ccsne

plot_ccsne(models, ykey, *, semilog=False, onion=None, **kwargs)

Plot for CCSNe models. Plots the mass coordinates on the x-axis.

Source code in simple/ccsne.py
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
@utils.add_shortcut('abundance', default_attrname='abundance', unit='mass')
@utils.add_shortcut('intnorm', default_attrname='intnorm.eRi', unit=None)
@utils.add_shortcut('stdnorm', default_attrname='stdnorm.Ri', unit=None)
@utils.set_default_kwargs(inherits=plotting.plot,
    linestyle = True, color=True, marker=False,
    fig_size= (10,5))
def plot_ccsne(models, ykey, *,
         semilog = False, onion=None,
         **kwargs):
    """
    Plot for CCSNe models. Plots the mass coordinates on the x-axis.
    """
    # Wrapper that adds the option to plot the onion structure of CCSNe models
    onion_kwargs = utils.extract_kwargs(kwargs, prefix='onion')

    # Do this here since we need to know the number of models for the onion shell
    where = kwargs.pop('where', None)
    where_kwargs = kwargs.pop('where_kwargs', {})
    where_kwargs.update(utils.extract_kwargs(kwargs, prefix='where'))
    models = plotting.get_models(models, where=where, where_kwargs=where_kwargs)

    if semilog: kwargs.setdefault('ax_yscale', 'log')

    ax = plotting.plot(models, '.masscoord', ykey, xunit=None, **kwargs)

    if onion or (onion is None and len(models) == 1):
        if len(models) > 1:
            raise ValueError(f"Can only plot onion structure for a single model")
        else:
            plot_onion_structure(models[0], ax=ax, **onion_kwargs)

    return ax

simple.plotm

plotm(models, xkey, ykey, xycoord=(0, 0), *, arrow=True, arrow_position=0.9, default_attrname=None, unit=None, where=None, mask=None, mask_na=True, ax=None, legend=None, update_ax=True, update_fig=True, **kwargs)

Plot the slope of ykey / xkey for each model in `models.

It is possible to plot multiple datasets if xkey and/or ykey is a list of multiple keys for a isotope key array. If only one of the arguments is a list then the second argument will be reused for each dataset. If a key is not present in an array then a default value is used. See get_data for more details.

The data to be plotted is retrieved using the get_data function. All arguments available for that function not included in the argument list here can be given as one of the kwargs to this function.

The data will be plotted using matplotlib's axline function. Additional arguments to this function can be passed as one of the kwargs to this function. Some arguments have enhanced behaviour detailed in a section below.

Parameters:

  • models

    A collection of models to plot. A subselection of these models can be made using the where argument.

  • xkey, (ykey (str, int, slice) –

    This can either be a valid index to the default_attrname array or the path, with or without a valid index, of a different attribute. See get_data for more details.

  • default_attrname (str, default: None ) –

    The name of the default attribute to use if xkey and ykey are indexes.

  • unit (str, default: None ) –

    The desired unit for the xkey and ykey. Different units for xkey and ykey can be specified by supplying a (<xkey_unit>, <ykey_unit>) sequence.

  • where (str, default: None ) –

    If given will be used to create a subselection of models. Any kwargs prefixed with where_ will be supplied as keyword arguments. See ModelCollection.where for more details.

  • mask ((str, int, slice), default: None ) –

    Can be used to apply a mask to the data which is plotted. See the get_mask function of the Model object.

  • mask_na (bool, default: True ) –

    If True masked values will be replaced by np.nan values. Only works if both xkey and ykey have a float based datatype.

  • ax

    The axes where the data is plotted. Accepted values are any matplotlib Axes object or plt instance. Defaults to plt.gca().

  • legend (bool, default: None ) –

    Whether to create a legend. By default, a legend will be created if one or more datapoints have a valid label.

  • update_ax, (update_fig (bool) –

    Whether to update the axes and figure objects using kwargs that have the prefix ax_ and fig_. See simple.plotting.update_axes for more details.

  • **kwargs

    Valid keyword arguments are those using one of the prefixes define by other arguments, any argument for the simple.get_data function, or any valid keyword argument for matplotlib's plot function.

Data and axis labels

Labels for each axis and individual datapoints will be automatically generated. By default, the axis labels will contain the information common to all datasets while the label for the individual datapoints will contain only the unique information. You can override the axis labels by passing ax_xlabel and ax_ylabel as one of the kwargs. You can also override the datapoint labels by passing a list of labels, one each for each datapoint in the legend. See get_data for more details on customising the labels.

Iterable plot arguments

The following arguments for matplotlibs plot function have enhanced behaviour that allows them to be iterated through when plotting different models and/or datasets.

  • linestyle Can be a list of linestyles that will be iterated through. If True simple's predefined list of linestyles is used. If False no lines will be shown.

  • color Can be a list of colors that will be iterated through. If True simple's predefined list of colors is used. If False the colour defaults to black.

There are two ways these values can be iterated through. Either all the datapoints of a given model gets the same value or each set of datapoints across the different models gets the same value. By default, if there are multiple models then all the datasets for each model will have the same color. If there is only one model then the color will be different for the different datasets. If there are multiple datasets then each dataset across the different models will have the same linestyle and marker. If there is only one dataset then linestyle and marker will be different for each model.

This behaviour can be changed by passing fixed_model_linestyle, fixed_model_color and fixed_model_marker keyword arguments set to either True or False If True each model will have the same value. If False each dataset across the different models will have the same value.

Default kwargs and shortcuts

The default values for arguments can be updated by changing the plot.default_kwargs dictionary. Any argument not defined in the function description will be included in kwargs. Default values given in the function definition will be used only if a default value does not exist in plot.default_kwargs. Additionally, one or more shortcuts with additional/different default values are attached to this function. The following shortcuts exist for this function:

  • plotm.intnorm Default values to plot internally normalised data. This sets default_attrname to intnorm and the default_unit to None.

  • plotm.stdnorm Default values to plot the basic ratio normalised data. This sets default_attrname to stdnorm and the default_unit to None.

Returns:

  • The axes where the data was plotted.

Source code in simple/plotting.py
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
@utils.add_shortcut('abundance', default_attrname ='abundance', unit=None)
@utils.add_shortcut('stdnorm', default_attrname ='stdnorm.Ri', unit=None)
@utils.add_shortcut('intnorm', default_attrname='intnorm.eRi', unit=None)
@utils.set_default_kwargs(
    linestyle=True, color=True,
    fixed_model_linestyle = None, fixed_model_color = None,
    ax_kw_xlabel_fontsize=15,
    ax_kw_ylabel_fontsize=15,
    markersize=4,
    legend_outside=True,
    ax_tick_params=dict(axis='both', left=True, right=True, top=True),
    fig_size=(7,6.5),
    arrow_linewidth=0, arrow_length_includes_head=True, arrow_head_width=0.05,
    arrow_zorder=3
    )
def plotm(models, xkey, ykey, xycoord=(0,0), *,
         arrow=True, arrow_position=0.9,
         default_attrname=None, unit=None,
         where=None, mask = None, mask_na = True, ax = None,
         legend = None, update_ax = True, update_fig = True,
         **kwargs):
    """
    Plot the slope of *ykey* / *xkey* for each model in `*models*.

    It is possible to plot multiple datasets if *xkey* and/or *ykey* is a list of multiple keys for a isotope key
    array. If only one of the arguments is a list then the second argument will be reused for each dataset. If a key
    is not present in an array then a default value is used. See [``get_data``](simple.get_data) for more details.

    The data to be plotted is retrieved using the [``get_data``](simple.get_data) function. All arguments available
    for that function not included in the argument list here can be given as one of the *kwargs* to this function.

    The data will be plotted using matplotlib's ``axline`` function. Additional arguments to this function can be
    passed as one of the *kwargs* to this function. Some arguments have enhanced behaviour detailed in a
    section below.

    Args:
        models (): A collection of models to plot. A subselection of these models can be made using the *where*
            argument.
        xkey, ykey (str, int, slice): This can either be a valid index to the *default_attrname* array or the path, with
            or without a valid index, of a different attribute. See [``get_data``](simple.get_data) for more details.
        default_attrname (str): The name of the default attribute to use if *xkey* and *ykey* are indexes.
        unit (str): The desired unit for the *xkey* and *ykey*. Different units for *xkey* and *ykey* can be specified
            by supplying a ``(<xkey_unit>, <ykey_unit>)`` sequence.
        where (str): If given will be used to create a subselection of *models*. Any *kwargs* prefixed
            with ``where_`` will be supplied as keyword arguments. See
             [``ModelCollection.where``](simple.models.ModelCollection.where) for more details.
        mask (str, int, slice): Can be used to apply a mask to the data which is plotted. See the ``get_mask`` function of the Model
            object.
        mask_na (bool): If ``True`` masked values will be replaced by ``np.nan`` values. Only works if both *xkey* and
            *ykey* have a float based datatype.
        ax (): The axes where the data is plotted. Accepted values are any matplotlib Axes object or plt instance.
            Defaults to ``plt.gca()``.
        legend (bool): Whether to create a legend. By default, a legend will be created if one or more datapoints have
            a valid label.
        update_ax, update_fig (bool): Whether to update the axes and figure objects using kwargs that have the prefix
            ``ax_`` and ``fig_``. See [``simple.plotting.update_axes``](simple.plotting.update_axes) for more details.
        **kwargs ():
            Valid keyword arguments are those using one of the prefixes define by other arguments, any argument
            for the [``simple.get_data``](simple.get_data) function, or any valid keyword argument for
            matplotlib's ``plot`` function.

    Data and axis labels:
        Labels for each axis and individual datapoints will be automatically generated. By default, the axis labels
        will contain the information common to all datasets while the label for the individual datapoints will contain
        only the unique information. You can override the axis labels by passing ``ax_xlabel`` and ``ax_ylabel`` as
        one of the *kwargs*. You can also override the datapoint labels by passing a list of labels, one each
        for each datapoint in the legend. See [``get_data``](simple.get_data) for more details on customising the
        labels.


    Iterable plot arguments:
        The following arguments for matplotlibs ``plot`` function have enhanced behaviour that allows them to be
        iterated through when plotting different models and/or datasets.

        - ``linestyle`` Can be a list of linestyles that will be iterated through. If ``True`` simple's predefined
        list of linestyles is used. If ``False`` no lines will be shown.

        - ``color`` Can be a list of colors that will be iterated through. If ``True`` simple's predefined
        list of colors is used. If ``False`` the colour defaults to black.

        There are two ways these values can be iterated through. Either all the datapoints of a given model gets the
        same value or each set of datapoints across the different models gets the same value. By default, if there are
        multiple models then all the datasets for each model will have the same *color*. If there is only one model
        then the color will be different for the different datasets. If there are multiple datasets then each dataset
        across the different models will have the same *linestyle* and *marker*. If there is only one dataset then
        *linestyle* and *marker* will be different for each model.

        This behaviour can be changed by passing ``fixed_model_linestyle``, ``fixed_model_color``
        and ``fixed_model_marker`` keyword arguments set to either ``True`` or ``False`` If ``True`` each model will
        have the same value. If ``False`` each dataset across the different models will have the same value.

    Default kwargs and shortcuts:
        The default values for arguments can be updated by changing the  ``plot.default_kwargs`` dictionary. Any
        argument not defined in the function description will be included in *kwargs*. Default values given in the
        function definition will be used only if a default value does not exist in ``plot.default_kwargs``.
        Additionally, one or more shortcuts with additional/different default values are attached to this function.
        The following shortcuts exist for this function:

        - ``plotm.intnorm`` Default values to plot internally normalised data. This sets *default_attrname* to
            ``intnorm`` and the ``default_unit`` to ``None``.

        - ``plotm.stdnorm`` Default values to plot the basic ratio normalised data. This sets
                *default_attrname* to ``stdnorm`` and the ``default_unit`` to ``None``.

    Returns:
        The axes where the data was plotted.
    """
    ax = get_axes(ax)  # We are working on the axes object proper

    where_kwargs = utils.extract_kwargs(kwargs, prefix='where')
    models = get_models(models, where=where, where_kwargs=where_kwargs)

    # Get the linestyle, color and marker for each thing to be plotted.
    linestyles, colors, markers = parse_lscm(kwargs.pop('linestyle', True),
                                             kwargs.pop('color', True),
                                             kwargs.pop('marker', False))
    fixed_model_linestyle = kwargs.pop('fixed_model_linestyle', None)
    fixed_model_color = kwargs.pop('fixed_model_color', None)

    legend_kwargs = utils.extract_kwargs(kwargs, prefix='legend')

    label_kwargs = utils.extract_kwargs(kwargs, 'label', 'prefix_label', 'suffix_label',
                                        'key_in_label', 'numer_in_label', 'denom_in_label',
                                        'model_in_label', 'unit_in_label', 'attrname_in_label')
    arrow_kwargs = utils.extract_kwargs(kwargs, prefix='arrow')

    # If there is only one model it is set as the title to make the legend shorter
    model_in_label = label_kwargs.pop('model_in_label', None)
    if len(models) == 1 and model_in_label is None:
        label_kwargs['model_in_label'] = False
        legend_kwargs.setdefault('title', models[0].name)
    else:
        label_kwargs['model_in_label'] = model_in_label


    modeldata, axis_labels = get_data(models, {'x': xkey, 'y': ykey},
                                      default_attrname=default_attrname, unit=unit,
                                      mask=mask, mask_na=mask_na, _kwargs=kwargs, **label_kwargs)

    kwargs.setdefault('ax_xlabel', axis_labels['x'])
    kwargs.setdefault('ax_ylabel', axis_labels['y'])
    delayed_kwargs = update_axes(ax, kwargs, delay='ax_legend', update_ax=update_ax, update_fig=update_fig)

    has_labels = False
    for mi, (model_name, model_dataset) in enumerate(modeldata.items()):
        for ki, key_data in enumerate(model_dataset):
            if fixed_model_linestyle or (fixed_model_linestyle is None and len(model_dataset) == 1):
                ls = linestyles[mi]
            else:
                ls = linestyles[ki]
            if fixed_model_color is True or (fixed_model_color is None and len(modeldata) > 1):
                c = colors[mi]
            else:
                c = colors[ki]

            if not has_labels and key_data.get('label', None):
                has_labels = True

            label = key_data.get('label', None)
            for i in range(len(key_data['x'])):
                x, y = key_data['x'][i], key_data['y'][i]
                slope = y / x
                ax.axline(xycoord, slope=slope, label=label,
                          color = c, ls=ls, **kwargs)
                label = None

                if arrow:
                    if np.abs(slope) > 1:
                        y_arrow = np.array([arrow_position, arrow_position + 0.01]) * (-1 if y < 0 else 1)
                        x_arrow = 1 / slope * y_arrow
                    else:
                        x_arrow = np.array([arrow_position, arrow_position + 0.01]) * (-1 if x < 0 else 1)
                        y_arrow = slope * x_arrow

                    ax.arrow(x_arrow[0], y_arrow[1], x_arrow[1] - x_arrow[0], y_arrow[1] - y_arrow[0],
                            facecolor=c, **arrow_kwargs)

    update_axes(ax, delayed_kwargs, update_ax=update_ax, update_fig=update_fig)
    if legend or (legend is None and has_labels):
        create_legend(ax, **legend_kwargs)

    return ax

simple.set_logging_level

set_logging_level(level)

Set the level of messages to be displayed.

Options are: DEBUG, INFO, WARNING, ERROR.

Source code in simple/utils.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def set_logging_level(level):
    """
    Set the level of messages to be displayed.

    Options are: DEBUG, INFO, WARNING, ERROR.
    """
    if level.upper() == 'DEBUG':
        level = logging.DEBUG
    elif level.upper() == 'INFO':
        level = logging.INFO
    elif level.upper() == 'WARNING':
        level = logging.WARNING
    elif level.upper() == 'ERROR':
        level = logging.ERROR

    SimpleLogger.setLevel(level)

simple.update_axes

update_axes(ax, kwargs, *, delay=None, update_ax=True, update_fig=True, delay_all=False)

Updates the axes and figure objects.

Keywords beginning with ax_<name>, xax_<name>, yax_<name> and fig_<name> will be stripped from kwargs. These will then be used to call the set_<name> or <name> method of the axes, axis or figure object.

If the value mapped to the above arguments is: - A boolean it is used to determine whether to call the method. The boolean itself will not be passed to the method. To pass a boolean to a method place it in a tuple, e.g. (True, ). - A tuple then the contents of the tuple is unpacked as arguments for the method call. - A dictionary then the contents of the dictionary is unpacked as keyword arguments for the method call. - Any other value will be passed as the first argument to the method call.

Additional keyword arguments can be passed to methods by mapping e.g. <ax|xax|yax|fig>_kw_<name>_<keyword> kwargs to the value. These additional keyword arguments are only used if the <ax|xax|yax|fig>_<name> kwargs exists. Note however that they are always stripped from kwargs.

It is possible to delay calling certain method by adding <ax|xax|yax|fig>_<name> to *delay. Keywords associated with these method will then be included in the returned dictionary. This dictionary can be passed back to the function at a later time. To delay all calls but remove the relevant kwargs from kwargs use delay_all=True.

Returns dict: A dictionary containing the delayed method calls.

Source code in simple/plotting.py
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
def update_axes(ax, kwargs, *, delay=None, update_ax = True, update_fig = True, delay_all=False):
    """
    Updates the axes and figure objects.

    Keywords beginning with ``ax_<name>``, ``xax_<name>``, ``yax_<name>`` and ``fig_<name>`` will be stripped
    from kwargs. These will then be used to call the ``set_<name>`` or ``<name>`` method of the axes, axis or
    figure object.

    If the value mapped to the above arguments is:
    - A boolean it is used to determine whether to call the method. The boolean itself will not be passed to
        the method. To pass a boolean to a method place it in a tuple, e.g. ``(True, )``.
    - A tuple then the contents of the tuple is unpacked as arguments for the method call.
    - A dictionary then the contents of the dictionary is unpacked as keyword arguments for the method call.
    - Any other value will be passed as the first argument to the method call.

    Additional keyword arguments can be passed to methods by mapping e.g. ``<ax|xax|yax|fig>_kw_<name>_<keyword>``
    kwargs to the value. These additional keyword arguments are only used if the
    ``<ax|xax|yax|fig>_<name>`` kwargs exists. Note however that they are always stripped from ``kwargs``.

    It is possible to delay calling certain method by adding ``<ax|xax|yax|fig>_<name>`` to ``*delay``. Keywords
    associated with these method will then be included in the returned dictionary. This dictionary can be passed back
    to the function at a later time. To delay all calls but remove the relevant kwargs from *kwargs* use
    ``delay_all=True``.

    Returns
        dict: A dictionary containing the delayed method calls.
    """

    ax = get_axes(ax)
    axes_meth = utils.extract_kwargs(kwargs, prefix='ax')
    axes_kw = utils.extract_kwargs(axes_meth, prefix='kw')

    xaxes_meth = utils.extract_kwargs(kwargs, prefix='xax')
    xaxes_kw = utils.extract_kwargs(axes_meth, prefix='kw')

    yaxes_meth = utils.extract_kwargs(kwargs, prefix='yax')
    yaxes_kw = utils.extract_kwargs(axes_meth, prefix='kw')

    figure_meth = utils.extract_kwargs(kwargs, prefix='fig')
    figure_kw = utils.extract_kwargs(figure_meth, prefix='kw')

    # Special cases
    if 'size' in figure_meth: figure_meth.setdefault('size_inches', figure_meth.pop('size'))

    if delay is None:
        delay = []
    elif type(delay) is str:
        delay = [delay]
    delayed_kwargs = {}

    def update(obj, name, meth_kwargs, kw_kwargs):
        for var, arg in meth_kwargs.items():
            var_kwargs = utils.extract_kwargs(kw_kwargs, prefix=var)
            try:
                method = getattr(obj, f'set_{var}')
            except:
                try:
                    method = getattr(obj, var)
                except:
                    raise AttributeError(f'The {name} object has no method called ``set_{var}`` or ``{var}``')

            if f'{name}_{var}' in delay or delay_all:
                delayed_kwargs[f'{name}_{var}'] = arg
                delayed_kwargs.update({f'{name}_kw_{var}_{k}': v for k,v in var_kwargs.items()})
                continue

            elif arg is False:
                continue
            elif arg is True:
                arg = ()
            elif type(arg) is dict:
                var_kwargs.update(arg)
                arg = ()
            elif type(arg) is not tuple:
                arg = (arg, )

            method(*arg, **var_kwargs)

    if update_ax:
        update(ax, 'ax', axes_meth, axes_kw)
        if xaxes_meth:
            update(ax.xaxis, 'xax', xaxes_meth, xaxes_kw)
        if yaxes_meth:
            update(ax.yaxis, 'yax', yaxes_meth, yaxes_kw)

    if update_fig:
        update(ax.get_figure(), 'fig', figure_meth, figure_kw)

    return delayed_kwargs